AD-A239 122
EAmna

owed .',-.?u»'; ".1‘ ,:c,l-":aa,

" * i

‘-7';' RS S 'n:_:‘\
Pllu)(391kj
) -4

91-07131
HMWWMWWWWW

y. 3

@

Technical Report 1429
June 1991

Software Development
on the High-Speed
Systolic Array
Processor (HISSAP):

Lessons Learned

F. M. Tirpak, Jr.

Approved for public release; distribution Is unlimited.

NAVAL OCEAN SYSTEMS CENTER
San Diego, California 92152-5000

J. D. FONTANA, CAPT, USN R. T. SHEARER, Acting
Commander Technical Director

ADMINISTRATIVE INFORMATION

The work detailed in this report was performed by the Processing Research
and Development Branch (Code 761) of the Naval Ocean Systems Center, San
Diego, CA 92152-5000. The project number is EE34, agency accession number
DN308022, and program element NIF, 604507N.

Released by Under authority of

G. W. Byram, Head F. M. Tirpak, Sr., Head

Processing Research and Space Systems and

Development Branch Technology Division
ACKNOWLEDGMENT

The High-Speed Systolic Array Processor (HiSSAP) project encompasses work
performed over a 7-year period at NOSC. The goal of this project was to obtain a
clearer understanding of the complex interactions between parallel processing
architectures and adaptive matrix-based signal-processing algorithms. Sponsorship of
system hardware and software development was initially obtained from the Lasers
and Microelectronics NOSC program block managed by Dr. Isaac Lagnado, and the
NOSC Research and Technology Branch (Code 553). During the intermediate phase
of the project, mapping of the multiple-signal classification (MUSIC) algorithm and
the finite-impulse response (FIR) filter onto the testbed hardware was supported by
joint sponsorship of the block and major bid and proposal discretionary funding
(coordinated by Dr. John Silva, formerly NOSC Program Director for Research and
Technology). Integration of these system software applications, and the balance of
the signal processing/data acquisition, and the demonstration of the high-frequency,
direction-finding application was obtained from the NAVSEA standard matrix
processor project (PMS-412), with additional funds supplied by the Office of Naval
Technology’s Lasers and Microelectronics block.

JA

SUMMARY

OBJECTIVE

This report documents the “lessons learned” in programming the Naval Ocean
System Center’s (NOSC’s) High-Speed Systolic Array Processor (HISSAP) testbed. The
procedures used for code generation, along with the programming utilities provided in
the software development environment, are discussed with regard to their impact on
the efficient implementation of algorithms on a parallel processing system such as
HISSAP. This information is intended for considerations pertaining to software-
development environments in future Navy parallel processing systems.

RESULTS

Many of HISSAP’s software-development utilities played key roles in the implemen-
tation of two computationally intensive algorithms: the Multiple-Signal Classification
algorithm (MUSIC) and a four-channel, narrowband, finite-impulse response (FIR)
filter. The introduction of utilities not included with the HISSAP tools would undoubt-
edly have increased the speed and efficiency of software development.

RECOMMENDATIONS

Commercial software development environments (targeted for processing platforms
where large volumes of application software are to be output) generally include fea-
tures more advanced than those of HISSAP. However, to meet minimum requirements
for the efficient implementation of algorithms, some utilities are indispensable. Some
of these basic software developmeru utilities, whether present with the HISSAP testbed
or not, are discussed in this report.

4 e s e o ke

CONTENTS

............................

HISSAP PROGRAMMING PROCEDURE: AN OVERVIEW
SUMMARY OF PROGRAMMING PROCEDURE AND TOOLS

A WORD ABOUT COMPILERS
PRIMITIVE PROGRAMMING

............................

HISSAP CODE GENERATION UTILITIES

Extended C Functions
Example of Operation

C Functions as Node-Level

Binary Field Editor

Source Code

RESOURCE ALLOCATION AND MANAGEMENT

Bit-Field Error-Checking
Bit-Field Contention Detection . . .
Resource Contention Detection . .

Interprocessor Data Communication

Synchronizing Algorithm Modules
APPLICATIONS-LEVEL. PROGRAMMING

MODULE LIBRARY MAINTENANCE

Module Reusability

Primitive and Module Naming Conventions
DATA FORM COMPATIBILITY AND TRANSITION ROUTINES
MODULAR PROGRAMMING ENVIRONMENT

PROGRAM ANALYSIS AND DEBUGGING UTILITIES

PROGRAM EXECUTION UTILITIES

PROGRAM TRACE AND DATA SNAPSHOT UTILITIES

BREAKPOINT UTILITIES

OPERAND REGISTER AND STACK INTERROGATION

ALGORITHM DESIGN AND ASSESSMENT UTILITIES
PC-MATLAB AS AN ALGORITHM ANALYSIS TOOL

CONCLUSIONo
REFERENCES,

it

o

[S)

O O I N OV v b W NN

— ek ek ek
W = O

p—
W

I e =
e e e R

—
[0 o]

RN YN
WD = O

[SS I o8
W

[N I S]
(o N o

FIGURES

N s W

HISSAP software development procedure

a. Binary editor displaying Microcode
b. Binary editor in Microcode Edit mode

HISSAP Microcode Generation Systemcouun....

HISSAP Operating System, “SAPMASTER”

SAPVIEW Program Execution and Data Watch Utility

Program Trace History Ultility

HISSAP Data Snapshot Utility

O 00 00 W

19
21
22
23

INTRODUCTION

This report documents the software integration procedure on the Naval Ocean Sys-
tems Center’s (NOSC’s) High-Speed Systolic Array Processor (HISSAP) testbed. The
report draws from the experience gained in implementing application-specific software.
The procedure is evaluated to provide some “lessons learned” as they apply to algo-
rithm development on future Navy signal-processing systems.

BACKGROUND

The Navy is planning to extend the AN/UYS-2(V) Enhanced Modular Signal Proces-
sor (EMSP) by providing a new functional element type, the Matrix Processor (MP).
This new element will be a parallel processing array optimized for the efficient imple-
mentation of linear algebra operations. Planning and specification of the MP have
made extensive use of the existing Navy in-house experience base in systolic systems.
This experience includes an ongoing investigation at NOSC of the applicability of par-
allel processing systems to certain signal-processing tasks. Processing systems devel-
oped during this time, starting in 1979, include the Systolic Array Processor (SAP), the
Systolic Linear Algebra Parallel Processor (SLAPP), the Video Analysis Transputer
Array (VATA), and the High-Speed Systolic Array Processor (HISSAP) testbed. Of
these systems, algorithm mapping work continues on the VATA; in the near future,
mapping work will begin on an Intel iWarp* parallel processing array. Further informa-
tion on these systems is given in references 1, 2, 3, and 4.

HISSAP, the system documented in this report, was built to host several signal-
processing algorithms including a multiple-channel narrowband filter and the Multiple-
Signal Classification (MUSIC) algorithm. The HISSAP study concluded with a
successful laboratory test of a high-frequency direction-finding (HFDF) application.

As a short summary, the test setup consisted of two “HF signals” (two laboratory syn-
thesizers operating in the low HF band) transmitted through an analog antenna array
simulator, digitized by a data-acquisition subsystem, and processed by HISSAP, which
computed the simulated directions of arrival. HISSAP processed the digitized data by
using the two signal-processing routines mentioned above (the digital filter and
MUSIC). The results of this test are documented in reference S.

SCOPE

The HISSAP HEDF effort provided insight into the complex interdependencies
between architectures and algorithms. In addition, because the HFDF application was

*INTEL and iWarp are trademarks of Intel Corporation.

the first of the NOSC-developed systems to feature a complex software development
environment, the application was an important source of in-house experience in devel-
oping and integrating parallel-processing software development tools.

Software development is a critical aspect of any parallel processing system; in gen-
eral, as high-performance processing architectures and applications become more com-
plex, the software development process becomes increasingly difficult. As a result,
application software takes longer to produce. Programmers require powerful tools to
help reduce the lag time between problem identification and algorithm implementation.

The original goal of the HISSAP project involved the study of parallel processor/
parallel algorithm interactions. A natural extension of this study would be to evaluate
and improve parallel programming environments. In light of the recent increase in
commercial activity involving software development environments, this report provides
guidance, through NOSC’s first-hand experience, to assist in developing future pro-
gramming environments for Navy systems.

HISSAP PROGRAMMING PROCEDURE: AN OVERVIEW

First, the report provides a short summary of the algorithm programming procedure
on HISSAP. Next is a brief overview of the programming resources available in the
software development environment. Finally, a commentary is made on parallelizing
compilers and their applicability to the HISSAP effort.

SUMMARY OF PROGRAMMING PROCEDURE AND TOOLS

Figure 1 is a summary of the software development procedure. The process of pro-
gramming an algorithm on HISSAP began with the conversion of a sequential model
into parallel form, with the workload partitioned among multiple processors according
to a predefined mapping strategy. The mapping strategy was usually the result of algo-
rithm analysis that used the software package PC-MATLAB* (described later). Binary
HISSAP native code (microcode) was then generated to control each processor’s activ-
ity in the algorithm execution. The microcode files were downloaded to the appropriate
processors for subsequent execution in a custom operating environment. An IBM PC/
AT** served as the host computer to the HISSAP array, as well as the platform upon
which software development took place.

*PC-MATLAB is a trademark of The MathWorks, Inc.
**IBM PC/AT 15 a trademark of IBM.

o

APPLICATION

DESCRIPTION
ALGORITHM DATA
DESCRIPTION SIMULATOR
»| MIcROWAVE
EQUENTIAL PARALLEL obUCES
SEuER PROGRAM ALGORITHM ALGORITHM o MODULES
SIMULATION [™™] SIMULATION [™ __ MAPPING MAPPING e
SPECIFICATION TOOLS
— ALGORITHM SYSTOLIC
CONTROL ARRAY
> PROGRAM =% HARDWARE
HARDWARE
DIAGNOSTIC |
SOFTWARE
PERFORMANCE
ASSESSMENT
SOFTWARE

Figure 1. HISSAP software development procedure.

The HISSAP software development environment consisted of microcode generation
utilities, subroutine object code libraries, software execution utilities, and run-time
analysis and debugging tools. Each component made an important contribution to the
software development phase of the HISSAP effort. These components, as well as the
use of PC-MATLAB as an algorithm development tool, will be discussed in greater

depth.

A WORD ABOUT COMPILERS

State-of-the-art, commercially available parallel processing systems employ paral-
lelizing compilers in their programming environments. The HISSAP programming

environment does not. These powerful resources assist in the partitioning and mapping
(task allocation) described above by customizing the algorithm to the system’s underly-
ing processor topology. Resource allocation (e.g., memory and floating-point register
assignment) and interprocessor communication are accomplished similarly by these com-
pilers, thereby greatly reducing the workload placed upon programmers. The study of
algorithm-architecture interaction that uses HISSAP as a research platform has not
included the development of a parallel compiler customized to HISSAP’s unique proc-
essing characteristics.

It 1s expected that the Matrix Processor enhancement to the EMSP will include a
parallelizing compiler resource. In fact, programming parallel algorithms at the level
envisioned for Navy signal-processing applications would be impossible without such a
resource. Therefore, as a first “lesson” learned by programming HISSAP, a massively
parallel programming environment must have a parallelizing compiler to expedite code
generation at the system level. This compiler would be customized to the system’s
architecture and thereby would be responsible for the machine-level issues involved in
programming.

In many cases, the first attempts to program a sequential algorithm onto a parallel
processing system are performed strictly “by hand,” i.e., the allocation of tasks onto
the processing elements is determined by the programmer and not by an “intelligent”
compiler. Such was the case in programming MUSIC and the filter on HISSAP. How-
ever, as more and more routines become established in software, their implementations
on such a system become simpler. The programmer identifies the routine and assigns a
problem size, and the compiler, if available, partitions the problem and generates code.

Some of the topics discussed in the following sections relate to code development
tasks normally accomplished by parallelizing compilers. However, even with the incor-
poration of such a resource in the HISSAP programming environment, most of the
“lessons learned” referenced in the following sections DO NOT become trivial. The
circumstances of the effort must be understood in order to take the topics discussed in
the following sections in the proper vein. Since no straightforward method of program-
ming the HFDF algorithms existed prior to their implementation on HISSAP, it is
unclear what benefit, if any, a compiler would have provided. Therefore, so as not to
belabor the obvious, the documentation will avoid the tendency to remedy problems
with a compiler as a “cure-all,” although it should be understood that a compiler is an
essential part of any proposed programming resources.

PRIMITIVE PROGRAMMING

This section begins with a concise description of the primitive-level coding proce-
dure on HISSAP. In this context, primitive coding refers to generating microcode that

describes a basic machine operation, or several such operations that comprise a basic
algorithm subroutine. Primitive coding procedures are also important in other applica-
tions including “hard-wiring” array processor functions into other operations and
writing optimized code. For example, the pipelining of arithmetic instructions is accom-
plished this way. The resulting primitive object code is stored in libraries for incorpora-
tion into higher level applications.

This section details some important primitive-level code generation utilities (both
present in and absent from HISSAP). The section also describes system details upon
which application-level programming utilities (discussed later) are based.

HISSAP CODE GENERATION UTILITIES

A HISSAP microword was constiucted of 176 bits for the arithmetic processors
(64 for the input/output processors), organized into single-bit or multiple-bit instruction
fields. The fields controlled the various hardware subsystems such that their operations
took place concurrently during an instruction cycle. In simplest form, programming
HISSAP involved configuring the fields necessary to enable desired hardware functions
during a given microword’s execution. Each field had to be programmed in each
instruction clock cycle. Moreover, some hardware functions required several clock
cycles (hardware pipelining), so the related bit fields also had to be programmed cor-
rectly over multiple instructions. Generating and managing instructions of this complex-
ity necessitated a sophisticated set of microcode development tools.

Extended C Functions

HISSAP microcode was created in one of two ways. In one method, generating
primitives was accomplished while using custom functions written in C. Many basic
machine operations were represented in this fashion—the C functions being named
according to mnemonic descriptions of the operations. The combination of C source
code, the commercial C compiler, the object code archiver and libraries, and the host
executable code (which generated the microcode files) composed the microcode assembly
subsystem of the HISSAP software development environment.

Each function generated the required number of microwords and, using the
parameters sent by the calling program, modified the bit fields necessary for the exe-
cution of the HISSAP primitive. If the C source code specified that microcode instruc-
tivns be generated for multiple processors, then the microcode files for those proces-
sors were created during the execution of that single host program. In this way, code
could potentially be generated for all 20 processors “in parallel,” thus saving the time
spent using multiple source and executable files.

In addition to binary microcode, these C functions created related user comment,
pipeline trace, and error message files. User comments that describe program event flow

were created by the programmer in conjunction with the C functions that specify
microcode instructions. These comments were intended to aid in debugging program
execution. Pipeline trace comments provided bit-field by bit-field descriptions of
microinstruction execution. Error messages provided information about erroneous bit-
field assignments or contentions (these are described in detail below).

The object code representing these functions was placed in primitive libraries (by
using a commercial library archiving program) and served as the microcode database
in the HISSAP software development environment. Medium-level programs that called
the basic functions became functions themselves, thereby embodying the next level of
the code hierarchy, and so on. Libraries that contained functions from these different
levels were created as the HISSAP programming effort evolved. A single function call,
therefore, could be responsible for generating microcode to perform as simple an
operation as a sequencer jump or a more complex one such as an inner product
calculation. A more detailed discussion of object code libraries is given in the section
on applications-level programming.

The C-based microcode assembly “subsystem” proved to be the main tool for
HISSAP primitives development (and, as will be discussed later, for the development
of large-scale applications). The convenience of mnemonic-type function calls and the
automation of large-volume code generation eliminated the need for “hand-coding” of
primitives, while the generation of trace and error message files aided in debugging.

Example of Operation. In each HISSAP microinstruction, all aspects of hardware
operation (enabled or disabled) had to be specified: memory location, direction of data
flow, address generation, floating-point mode, etc. At the source level, specifications
were passed as parametric arguments to the C functions. For example, a command to
move (MV) a floating-point value from data memory (DM) to an arithmetic register
(RF) would be of the form:

MV_DM_RF (mem_location, reg_location),

where the “locations” were represented either by hex values or by previously defined
labels. The function, when called during execution of the microcode generating pro-
gram, generated the correctly configured binary microcode image in a file ready for
download to HISSAP by the host personal computer {(’C).

C Functions as Node-Level Source Code. An important distinction should be made
between the use of the term “high-level language,” in the context of this report, and its
use in other parallel processing literature. This report refers to high-level language
(HLL) as one such as C or PASCAL that allows expedient creation of microcode with-
out resorting to binary manipulation. In the case of HISSAP, the source code for each
node was generated independently, the system architecture was usually apparent in the

function call (see previous example;, and interprocessor communication was set up
explicitly by the programmer (more on this later). .Other references to HLL usually
mean that the system architecture is not visible to the programmer, that a single piece
of source code represents an entire array operatioin, and that a compiler exists that
generates and distributes individual node microcode and handles internode communica-
tion. The programming language used by those systems might be better thought of as
“high-level DISTRIBUTED language,” whereas the use of C for generating HISSAP
code is really programming in a “high-level NODE language.”

Binary Field Editor

In the other method of generating HISSAP code, individual microwords were “hand-
coded,” with the use of a binary field editor. This editor allowed direct mouification of
individual bits within microwords and was particularly useful for creating small
microcode files or for making minor changes in a large binary file. Because hardware
resource assignment, counter/timer values, and sequencer instructions could be quickly
manipulated, this method was also useful for debugging software and hardware.

One of the most notable features of this utility was the ability to view and update
the bit fields at the bit or field level, with on-screen display of the binary, hexadeci-
mal, and decimal values. Textual information was also shown that described the effect
of the field’s current value on the particular hardware subsystem controlled by that
field. This information provided a user-friendly method of configuring bit fields by
using multiple references of hardware functionality. Figures 2a and 2b show two caai.-
ples of this utility.

A primitive-level programmer, unlike an applications programmer, needs access to
microcode at the bit-field level. In a programming environment where low-level (primi-
tive) coding is performed, a binary feld editor is useful for quick manipulation of
microcode. The binary editor included in the HISSAP software development environ-
ment proved to be a useful resource, especially during code debugging.

Figure 3 provides a summary depiction of the HISSAP microcode generation sys-
tem.

(12

100000 0 ©O
00000 00000
10000 00 OO0
100000 0 QO
00000 00000
10000 00 00
100000 0 30
0000 00000
10110 00 00
100000 O 0O
02000 00000
18000 00 00
100000 O CO
30000 ©gCCo
0000 00 CC
1C0000 0 00
a{C30 00000
iC010 00 00
“CG6CO0 0 00
CC0CC 20000
123306 0C Q0

00 0 00 0000 0000 1111 1110 0QC 000 G 0 O O 11111 0C00O 00000
00000 00000 1 1 1 1 0 0 00000 0 00 11112 0 1111 1000 1000 1000

1 00 00 00 0000 00000000000000000000000000000000 00006 O 0000 1110
00 0 00 0000 0000 1111 1111 000 000 O O O O 10000 00000 00000
00000 00000 1 1 1 1 0 0 000000 0 0 1111 O 1111 1000 1000 1000

1 00 00 00 0000 00000000000000000000000000000000 0000 0 0000 1110
00 0 00 0000 0000 1111 1111 000 000 0 O O O 10000 00000 00000
00000 00006 1 1 1 1 0 0 00000 0 O O 1111 O 1111 1010 1000 1000

0 00 10 01 0000 00000000000000000000000000110001 €000 0 0000 1110
00 0 00 0000 0000 1111 0111 000 000 0 O O O 11111 00000 0OCOO
00000 00000 1 1 1 1 0 0 0000 0O 0O O 0 1111 C 1111 1000 1000 1000

1 00 00 00 0000 00000000000000000000000000000000 0000 O 0000 1110
00 ¢ 00 0C00 0000 1111 1111 000 000 O O O O 10000 00000 00000
000060 00000 1 1 1 1 0 0 0000 0 0 0 0 1111 O 1111 100C 1000 1000

1 00 00 00 0000 00000000000000000000000000000000 0000 O 0000 1110
00 & 00 0000 00CCC 1111 1111 000 00O O O C O 10000 00000 00000
00000 00000 1 2 1 1 0 0 0CO0 O O O 0 1111 O 1111 1000 1000 1000

0 00 10 01 0000 0000C0O000000000000600000000110010 0000 O 0000 1110
00 0 00 0000 0000 1111 1111 000 000 O O O O 10000 00000 00000
00000 00000 1 1 1 1 0 C 0000 00 0 0 1111 0 1111 1000 1000 1000

1 00 00 00 Q0G0 C00000000000CCCC0000000000G12000 0112 0 0000 0011

ADD.SAX
K 0..18..18 bit: 0 J
Figure 2a. Binary editor displaying Microcode.
ri? 100050 0 G0 00 0 00 0000 0000 1111 1110 000 000 0 0 0 0 11111 00000 00000)
50000 00000 00000 00000 1 11 1 0 0 0000 00 00 1111 0 1111 1000 1000 1000
15030 C0 0C 1 00 00 00 0000 00000000000000000000000000000000 0000 0 0000 1110
T4 1203C0 0 00 00 0 00 0OCCO 0000 1111 1111 0G0 000 0 0 O O 10000 CO0CO0C 00000
20000 00000 00000 00000 1 111 00 000006000 1111 O 1111 1000 100C 1000
10500 €O GC 1 0C 00 00 0000 00000000000000000000000000G00000 0000 0 0000 1110
©4 100000 0 GO 00 O 00 0000 0060 1111 1111 000 000 0 O O 0 10000 00000 00000
5000C 00000 00000 00000 1 1 1 1 O O 00CO 0O 0 O O 1111 O 1111 1010 1000 1000
— Instruction Address: 018
o0 02 00020002000 01lc0002000 3000 1000 O
0 l 0 r 0 I 3 l ¢ I e 0 I 3
0000000000000 1100060111000000011
1 0 018 l 7 00 3

Fileld Sequencer Instruction Select

Destcr Conditional Jump Addr = (PLR)

R 150000 0 00 00 0 00 0000 6000 1111 1111 000 C0O 0O C O O 10000 0000C CO00OO
425000 50000 00000 00000 1 11 1 0 0 0000 0 0O 0 0 1111 0 1111 1000 1000 1000
10060 50 00 1 00 0C 00 0000 000000000000000CCG0O0000000011000 0111 0 0000 0011

ADD . SAX
0..18..18 bit: 0
\‘Writa Jump Toggle cursor Help Quit HOME END CTRL+HOME CTRL+END J

Figure 2b. Binary editor in Microcode Edit mode.

(Microcode Instructions
Structure Generation Handlers

Microcode C comprier, orject-coge arihiver, hipraties, nost

Assembly

‘ates user instrullion spediiicalicns (i Ol
700008 'mage

Subsystem

Privites Lommunicalion
Cetween nogt (oge Nies
ang the orocesser
microcede memory

Bit Displays contents of microcode files in
Dump nexaces:mal format
Trale Loyaents

Code Memory
Image

Prreving Trale Lomnents

Figure 3. HISSAP Microcode Generation System.

RESOURCE ALLOCATION AND MANAGEMENT

HISSAP’s 176-bit (or 64-bit) microwords required error-checking utilities in the
primitive programming environment. This need was envisioned during the development
of tools for HISSAP. Such tools, whether included in the final HISSAP software devel-
opment environment or not, are described here.

Bit-Field Error-Checking

The bit fields defining hardware states were restricted to certain values or ranges of
values. When supplying parameters to the microcode generating functions, the pro-
grammer had to be aware of the limitations on those values. However, an automated
method of detecting invalid bit-field assignments was developed. Such an error-
detection method benefited the HFDF software development effort. If an invalid
microcode bit assignment were made, the generating function flagged the programmer
with information regarding the microword location, bit field, and erroneous bit pattern.

For example, the largest immediate memory location addressable in a HISSAP
microword was decimal 4095 (hex FFF). If the programmer attempted to pass a value
larger than FFF as an immediate address parameter, the generating routine would
detect it and produce an error message with the pertinent information.

A notable feature of this resource was its ability to check for the validity of bit
fields with regard to their interaction with other related bit fields. Fields whose individ-
ual configurations were correct may have collectively represented a concurrent hardware
operation that was undefined. The HISSAP code generation functions performed checks
of related bit fields.

One suggested improvement of this feature would be to allow “real-time” correc-
tions of invalid bit-field assignments during code generation. On HISSAP, once the
errors were mapped, the programmer returned to the source code level, made the cor-
rections, and recompiled. Using the proposed method, once an error was detected, the
programmer would be cffered the choice of changing it interactively or correcting it
“off-line.” This feature represents a marked increase in complexity of the code-
generating support routines (not available in the off-the-shelf C compiler) and hence
was not within the original scope of HISSAP code development. However, such a fea-
ture is envisioned to reduce microcode development time on future operational sys-
tems.

Bit-Field Contention Detection

Another type of microcode-generating error occurred when attempting to overwrite
bit fields already defined within a microinstruction. This was frequently encountered
during software pipelining. The hardware and the microword format were designed such
that two or more operations could reside within a single microword (or sequence of
microwords), provided that those operations did not require use of the same bit fields.
Thus, microcode generating functions were written to configure bit fields in microwords
previously created by other functions, in order to populate those microwords with mul-
tiple operations. This pipelining capability provided computational speed and efficiency
but required a very rigorous programming effort.

When instructions are pipelined, careful attention must be paid to the bit fields
being used in order to prevent contentions between coexisting operations. This require-
ment necessitates another error-checking capability within the microcode generating
software. A processing scheme (especially one that uses instruction pipelining) must
incorporate in its development environment a means to detect bit contentions caused
by two or more operations sharing bit fields within a microword.

Typical applications programmed on HISSAP required 20 files (one for each of
16 arithmetic and 4 I/O processors) with hundreds or thousands of microwords each.

Attempts to pipeline instructions for speed relied on a system of checking bit patterns
prior to their modification to see if an overwrite of a previous assignment was to
occur. The programming utilities would flag the programmer when such contentions
occurred during code generation. The errors were logged by microword and bit-field
locations and thus provided a means for the programmer to find and fix the conten-
tions. This mechanism was similar to those available in commercial microcode pro-
gramming environments.

Resource Contention Detection

Frequently, when pipelining a sequence of instructions (particularly arithmetic
operations), a data memory or operand register location was used more than once
within that sequence. Occasionally, such a resource was inadvertently designated as an
arithmetic source or destination register for an operation before the data currently
occupying it was no longer needed. If a contention took place, then the operation
requiring that previous value might have produced an erroneous result. The program-
ming tools required the ability, during code generation, to mark operand registers and
data memory locations as “in use,” thereby protecting their contents from destruction
by other operations, until those contents were no longer needed.

Built into the microcode generating tools for HISSAP was such a capability that,
depending upon the length of the operation (and thus the number of instructions for
which the register contents had to remain intact), protected operands from being over-
written. The HISSAP mechanism only alerted the programmer to an impending over-
write; a more complex tool could have redirected the operands of the infringing
instruction to another set of registers.

Interprocessor Data Communication

All of the advanced algorithms implemented on HISSAP included interprocessor
data communication in flow conventions defined by the mapping strategies. It proved
to be the operation most sensitive to incorrect coding. Interprocessor communication
was completely determined by the algorithm design; the number of data elements
to be transferred at a particular time was algorithm-dependent. It was completely
synchronous, in the sense that processors had to be in lock-step mode during the trans-
fer interval. And there was no queuing system; the coding determined the time at
which messages would be transferred. These conditions required precision in program-
ming communication routines.

HISSAP had the capability of transferring data between processors at one element
per clock period when in pipeline mode. Each element was transferred as a 32-bit
word on a parallel bus. Data transfer occurred on a word-by-word basis, not on a
packet basis. A short sequence of instructions was required to transfer a single word;

11

this sequence had to be executed once for each word transferred. However, since no
information was contained within a block of data to indicate the transfer size, the pro-
grammer was responsible for providing the correct number of instruction sequences for
each block transfer. In addition, the instructions for performing the handshaking and
transfers had to contain other pertinent information at the source level, including data
flow direction (port assignment) and the memory locations accessed.

Of course, the data had to be valid on the communication link during the interval
that the receiver interrogated its incoming port. The programmer was responsible for
sequencing the respective write and read instructions so that these timing-critical events
occurred on the same clock cycle. This was done at the source code level—there was
no compiler to ensure that those events lined up in time. The programmer usually initi-
ated a transfer with a REQUEST/ACKNOWLEDGE handshake pair to synchronize the
processors, followed by carefully aligned sequences of transfer instructions. It is easy
to see that generating individual transfer routines for a large algorithm partitioned
among 20 processors could be very time-consuming. Debugging the HFDF code when
transfer errors occurred was, at best, quite tedious.

Whatever the method of message transfer (including queued, packeted messages),
there must be a means of checking the integrity of interprocessor communication. In
the case of HISSAP, even a single clock interval of misalignment between the interact-
ing processors would cause failure in the transfer of data. The HISSAP utilities would
have benefited by having the capability to check integrity of handshaking, and proper
alignment of data transfer instructions, in the microcode of two or more interacting
processors.

Such a utility would be able to recognize when a transfer was to occur at a specific
point in time during the algorithm execution. Since the transfer would be a shared
event, this information should be supplied in each of the active processors’ source code
files. During microcode generation, a “moderating” function, similar to one used for
bit-field contention, would detect transfers and would verify that the handshake signals
occurred correctly and that subsequent transfer instructions lined up properly in time.
If potential errors were detected, then information regarding their location(s) in the
source code would be supplied to the programmer.

The absence of such a utility in the HISSAP programming environment resulted
in significant time spent debugging unsuccessful data transfer attempts. In addition,
hardware-oriented problems in transferring data often could not be identified until cor-
rectly configured microcode was available to test the transfer operations. Uncertainty in
both hardware and software integrity created difficulties in troubleshooting those opera-
tions. Therefore, based upon our experience, it is important to have a way to verify
correct use of communication instructions by interacting processors.

12

Synchronizing Algorithm Modules

In order to coordinate the tasks performed by the processors in a parallel system, it
is often useful to divide the algorithm into computational “phases.” Each phase is
characterized by the processors performing a number of computations; these computa-
tions depend on the results of previous phases from other processors. The processors
do not necessarily need to be synchronized during the computations, but they DO need
synchronization between phases, particularly if data are to be passed between proces-
sors during those interim periods. The algorithm must include a mechanism for syn-
chronizing the processors at these times.

There were two ways in which code modules that represented phases were
synchronized on HISSAP. The first of these involved local control, whereby the active
processors remained in synchronization between the execution of adjacent routines. In
developing algorithms on HISSAP, the synchronization of processors between two arbi-
trary modules by using this lock-step method was a critical and often painstaking task.
The code blocks within EACH of the 16 processors had to contain exactly the same
number of instructions (including No Operations [NOPs]) to ensure synchronization.

The other method of synchronization involved global signal control, such that each
processor looped on a single instruction and sent a low level to a wired-OR circuit and
waited for all processors to send this level before proceeding. This proved to be the
most convenient, reliable method of interprocessor synchronization.

Either method would have benefited from a utility to check synchronization during
microcode generation. Such a method would be similar to checking for data
communication synchronization (as described above). A local synchronization check
would count instructions designated by the programmer as “sync” instructions; a check
of the global synchronization would ensure that all processors had an instruction at
some “phase boundary” that performed a global signal synchronization.

The lack of such a utility, while not as critical as the data communication verifica-
tion utility, nevertheless resulted in otherwise productive programming time being spent
tracking down synchronization errors during HFDF software development. This was
especially true when large applications began to emerge from primitive building blocks,
few of which had standardized synchronization checks buiit in.

APPLICATIONS-LEVEL PROGRAMMING

This section addresses the issue of programming algorithms on HISSAP at the
applications level. This was to be the predominant method of programming algorithms,
particularly after a complete set of primitives had been made available in user librar-
ies.

Since applications (or algorithm) programmers should not be concerned with the low-
est machine-level details of instruction interaction or optimization, their programming
environment must contain a suite of tools different from those provided for primitive-
level programmers. The tools must provide a means to interface the primitive modules
needed to form complete programs and must also provide competent run-time analysis
and debugging capabilities.

This section will cover the topic of software module maintenance and interfacing,
including a discussion of the need for an environment under which an applications pro-
grammer can “comfortably” create programs from primitive modules. The next section
will be devoted to the subject of program analysis and debugging.

MODULE LIBRARY MAINTENANCE

As described previously, the majority of the HISSAP algorithm development effort
relied on the programming, use, and maintenance of source-code descriptions of
HISSAP functions and their associated object-code libraries. Libraries containinz the
object code (generated from C) for basic HISSAP machine operations and low-level
primitives were created to link with object code describing higher level programs. The
libraries were created and managed by using the library management resources pack-
aged with the commercial C compiler.

Obviously, the need for comprehensive primitive module libraries is greatest for the
applications programmer, who generates code by using function calls at the source
level and who is largely isolated from the low-level coding issues. Module reusability
becomes critical when many primitives have been written, compiled, and placed into
such libraries.

Module Reusability

Many primitive modules were programmed by using C subroutines for implement-
ing algorithms on HISSAP. Some modules were “algorithm-specific” and could be used
only in a narrow set of applications. A module to perform signal conditioning, for
example, could be employed in beamforming, direction-finding, spectral analysis, etc.
However, the implementation of the signal-conditioning module would depend on the
signal set and application involved. Modules of this kind had to bc custom-coded to fit
the desired scenario. The modules were usually created by using the lower-level primi-
tive functions described in the previous section, with the resulting object code stored in
algorithm-specific libraries.

Other modules were created as “general-purpose” utilities for use in many of the
possible HISSAP processing applications. Inner products and other matrix operations,

whose complexities varied only with problem size, were typical examples. Block data
movement routines were also seen as useful additions. Modules that receive such broad
usage are fundamental tools to the algorithm programmer. Programming time is saved
when these modules exist as “prepackaged” source code and/or object code. With this
as a motivation, libraries of reusable modules were created during the HISSAP algo-
rithm development effort. Libraries of these building block tools were compiled in
order to prepare for the expeditious implementation of larger algorithms.

A large inventory of general-purpose subroutines is beneficial to the development of
complex processing applications. Of course, it is impossible to populate such a library
with routines covering all conceivable processing tasks and processor topologies. A
point of diminishing returns is reached as the collection becomes unmanageable.
Instead, existing routines must be reconfigurable to some degree to suit a variety of
applications. The inner product module, as a hypothetical example, would reside in a
library with the required number of calculations controlled by the assignment of the
vector sizes. Following the parameter syntax in the C source code, the programmer
would supply the vector sizes and starting memory locations. Microcode would then be
generated with the correct number of computational iterations and correct data memory
accesses. Such “reusability” was an intended feature of the software integration proce-
dure on HISSAP.

However, reusability did not mature to a useful level (with the exception perhaps
of the lowest level of primitive modules). Programming a mixture of reusable and
algorithm-specific modules to realize application-level routines required meticulous
attention to inter- and intraprocessor details. The programmer required intimate
knowledge of both the existing and target configurations of the modules, as well as
the program segments with which they would interact. Oftentimes, simply supplying
parameters to the microcode generating functions did not correctly configure the
modules; modification of the underlying source code was required, leading to multiple
“versions™ of a once “reusable” routine. The extent to which such modules needed
modification often required significant programming time; this ultimately hindered the
overall development effort. This was particularly true when the modules involved had
been created by different programmers.

It must be understood that the HFDF software development on HISSAP was an
evolving process. The MUSIC algorithm incorporated modules in the category of reus-
able, standard building blocks. They included data transfer routines, standard matrix
operations, etc. Because the preliminary focus of the HFDF effort was to produce a
systolic mapping of MUSIC, many of these otherwise general-purpose modules were
specialized to work in accordance with that application. The initial effort did not
include the standardization of code interfaces. Therefore, extra effort was required in

configuring those routines to work in applications other than MUSIC (such as thc digi-
tal filter).

It warrants mentioning, as a “lesson learned,” that modules targeted for a multi-
application programming environment should adhere to some reusability standard. With
the inclusion of a parallel compiler in future software development environments, such
standardization would be built-in; however, the lack of standardization in the early
HFDF application programming on HISSAP emphasizes the need for code reusability.

Primitive and Module Naming Conventions

As a footnote to the above discussion, primitives and higher level code modules
should be organized according to efficient but thorough naming conventions. This falls
under the heading of “module library maintenance” (rather than under “primitive pro-
gramming environment”) because the ability to program efficiently at the application
level is related to well-documented code routines available to the programmer.

Not only must modules be logically named according to their major functions, but
also to specific details describing each module. Real or complex data formats, matrix
size limitations, and the like, can be part of the naming. Each primitive/module should
carry with it, at the source and documentation level, a description of the operation in
detail, input/output data requirements as needed, execution time in clock cycles, etc.
Application notes would be included when appropriate.

For the majority of the HISSAP HFDF effort, code modules were named and docu-
mented appropriately at the source level. However, the project suffered from a lack of
a “programmer’s reference” to most of the modules. Such a reference would be, of
course, a necessity in a future parallel processing software development environment.

DATA FORM COMPATIBILITY AND TRANSITION ROUTINES

Since data communication on HISSAP did not feature packetization, a significant
portion of programming involved the transition of data distributions between algorithm
stages. Most of the time, custom code was generated to perform the data configuring.
This was again due to the lack of a comprehensive set of reusable modules, specifi-
cally those that would be responsible for managing the data transition details.

Consider a data distribution, perhaps output by some arbitrary algorithm stage, that
is targeted for processing by another stage. Regardless of the physical source of the
input data, there must be appropriate conversion of this distribution into a form consis-
tent with that expected by the pending routine. “Form,” in the context of this report,
refers to (but is not limited to) the rate (e.g., number of input elements required per
output element) and the structure (e.g., data in row vs. column orientation). The sense

16

in which data are stored (and accessed) in memory is dependent upon the form of its
distribution, as is the portion of data accessed for a given computation, etc. The pro-
gramming of the algorithm must track the appropriate distributions.

In general, the programmer must know the forms of the input and output data dis-
tributions used by the algorithms. This knowledge determines the programming steps
required to perform any necessary form conversions. Form conversions may be as sim-
ple as accessing a sequential data set from a portion of memory and partitioning the
elements into another portion of memory according to some predefined structure. An
example is a matrix transpose. The source distribution is stored sequentially by row.
The new structure is a matrix whose elements are stored in memory sequentially by
columns, so form conversion will involve systematic “shuffling” of the source data
(e.g., by offset or modulus addressing) in preparation for input to the next routine.

One example stood out in the HISSAP HFDF application. A routine to convert the
form of the filter output data distribution to the form of the MUSIC input data was
required. This conversion took place as a final “step” in the filtering process and used
specially written code. A more efficient approach would have been to use a general-
purpose module that, using parameters supplied to it at the source level, converted the
filter output data distribution into the form required by the MUSIC routine. Such inter-
mediate code routines would be easily configurable so as to avoid the stockpiling of
individual routines for all possible data conversion situations in an application.

Our experience has shown that, in many cases, the creation of separate, specialized
conversion routines was cumbersome and required significant programming time. It
was not sufficient that the HISSAP programmer knew the data distributions when pre-
paring transfer or conversion routines. In addition, the programmer needed intimate
knowledge of the process by which the system communicated data between processors
and/or input-output elements. The programming of data transfers on HISSAP required
setting up synchronization and timing between processors (either locally or globally),
a priori knowledge of source and destination registers, and the length (in clock cycles)
of each transfer interval. This was in addition to knowledge of data flow directions,
which specified the not-so-obvious port drivers and crossbar switches that required
access via microcode control bits. Inattention to any of these details, even a single
control bit, often caused complete system failure.

Managing many such routines to preserve cohesiveness would require significant
time defining, programming, and debugging the routines. This would especially be true
when ail possibilities of processor connections and transfer specifications were consid-
cred. It would have been advantageous, from our experience, to maintain a library
of several general-purpose transfer (conversion) routines, each reconfigurable via
paramcters supplied during compilation or code generation. The details of timing,

synchronization, and execution time would be transparent to the general programmer,
to whom such details bear little importance during the algorithm development stage.

MODULAR PROGRAMMING ENVIRONMENT

Finally, consider the need for computer-aided software engineering (CASE) tools
for software development. These tools should allow software modules to be easily
interfaced during algorithm development, preferably at some graphical (flowgraph or
node) representation. This clearly would be a programming level targeted for system-
level programmers who have little or no knowledge of the underlying processor archi-
tecture; no such sophistication was required for the HISSAP effort.

The ability to program at a graphical level would resemble the way a processing
application is designed at the system level. Application-level programmers would be
able to design and code algorithms as if they were drawing signal-flow graphs. Block
diagrams drawn in the graphical environment would represent the highest level of cod-
ing; each block would correspond to a function residing in an application library. Col-
lections of these blocks would comprise a black-box level of programming.

Each individual block would contain a functional language description of the opera-
tion, much like the C functions written for HISSAP operations. The paramcters
required for each block (function) would be supplied by the programmer who would
use a text editor or menu-driven system. A system of cross-checking the validity of
paramcter assignments, both within the block and with reference to “neighboring”
blocks, would be performed by the CASE tools. Data form compatibility, as described
above, would be confirmed (or automatically configured) as well.

Many commercial CASE programming environments are available for a variety of
processing systems, including parallel systems and DSP microprocessor systems. An
advanced discussion of these and related tools (including parallelizing compilers) is
given in reference 6.

PROGRAM ANALYSIS AND DEBUGGING UTILITIES

In any programming environment, it is useful to have a method of debugging the .
software under development. In a parallel programming environment, where multiple
processors handling different data and performing different computations must be coor-
dinated, this is essential.

One nced not search long to find excellent commercial packages, designed for
popular uniprocessors, that aid programmers in debugging their code. Most noteworthy

18

in our experience is the CodeView* debugging utility (packaged with many Microsoft*
programming languages) designed for use in developing code for the Intel 80x86 fam-
ily of microprocessors. CodeView features several options for debugging a compiled
program, including full-speed operation with or without breakpoints, single-step opera-
tion with the ability to trace into external subroutines, data memory and processor reg-
ister watch points with the ability to alter their contents, and processor stack and status
register observation.

The collection of utilities used for downloading and executing microcode, viewing
and modifying data in HISSAP memory, and performing hardware diagnostics com-
posed the custom HISSAP operating system named “SAPMASTER.” This operating
system was implemented on the host PC, written in C and host assembly languages. A
block-level diagram of this operating system is shown in figure 4.

SAPMASTER PROGRAM

Menu Shell DOS Shell Command Shell

DOS File
Utilities

¥

Y

Algorithm Control

File Generation
& Transfer

Diagnostics

Caw _avel Brimitive Utliities) Language

Numeric Data Microcode Instructions
164 Bit or 176 Bit Wide)

(32 Bit -EEE Numper « 8 8it Tag)

Figure 4. HISSAP Operating System, “SAPMASTER.”

The intent of this operating system was threefold:

*CodeView and Microseft are trademarks of Microsoft Corporation.

1. Provide a software development environment for the creation/analysis of data
files input to or output from HISSAP algorithm mappings;

2. Provide applications programmers with access to the diagnostic utilities resi-
dent in the HISSAP hardware for isolating faults in the execution of
microcode; and

3. Provide an ability to execute algorithms in “mixed mode,” i.e., with compu-
tations shared between host and HISSAP.

Many of SAPMASTER’s features were chosen based on the CodeView package
referenced above and proved indispensable in the development of the HFDF system
software. Features included a single-step execution mode, a program trace utility, a
multiple-window utility for viewing the data memory contents of multiple processors
simultaneously (updated as desired), data and code memory content interrogation utili-
ties, facilities for modifying data and code memory locations, and a binary field editor
for modifying microcode files. There were other features, but the ones mentioned
above were the most important from a development standpoint and will be described in
more detail.

Constraints on time and budget, along with the physical characteristics of the
HISSAP hardware, combined to prevent what could be considered a “complete”™ soft-
ware debugging environment. Specifically, features missing or inoperable during devel-
opment included breakpoint/restart capabilities, and interrogation of floating-point oper-
and registers. The absence of these features from the HISSAP environment at times
caused difficulty in the HFDF software development. The function and importance of
these “missing” features, along with those present in the system, are discussed below.
Suggested enhancements to the existing features are also discussed.

PROGRAM EXECUTION UTILITIES

In debugging programs on HISSAP, several methods were available for executing
all (or portions) of a program at varying clock speeds including single-step. The user
selected which clock frequency and the number of cycles to be run. These utilities
(especially single-step operation) were valuable in the algorithm deveiopment phase
and were most powerful when used in conjunction with the utilities used for viewing ’
memory contents and the program sequence.

For instance, when stepping through a portion of code, the user could observe the
modification of data in active regions of memory as scheduled computations or data
movement were executed. Correct operation of the code was determined by comparing
these data to predetermined results. Portions of code known to operate correctly could

20

be evecuted at full speed (“skipped over™ in a sense) until the code in question was
reached. The code in question could then be scrutinized under slower execution.

Figure 3 shows a depiction of the screen used to view selected memory contents
(“watches”) in various processors. All 16 aiithmetic processors and 4 input/output
processors are shown enabled, although the user could specify fewer processors (and
more data waiches per processor) if desired.

(SAPVIEW)

11 12 - 13 14 T
002 002 002 002 02e
001 00 2.0e+00 | 004 00 5.1e+02 | 007 00 4.1e+03 } 008 00 2.0e+00 | 001 Q0 -6.1e+00
002 00 1.3e+02 | 005 00 1.Ce+03 | 008 00 8.2e+03 | 009 00 1.3et+02 | 002 Q0 6.9%e+00C
003 00 2.6e+02 | 006 00 2.0e+03} 009 00 1.6e+04 | 00a 00 2.6e+02 | 003 00 1.7e+00
21 22 23 24 L
002 002 002 002 086
00b 00 6.6e+04 | 0Ce 00 5.2e+05| 011 00 4.2e+06 | C14 00 3.4e+07 | 201 00 9.9%e-01
Ouc 00 1.3e+05 | 00f 00 1.0e+06 | 012 00 8.4e+06 | 015 00 6.7e+07 | 002 Q0 -1.0e+0D
00d 00 2.6e+05 | 010 00 2.1e+06 |} 013 00 3.3e+04 | 016 00 1.3e+0€| 003 00 -3.4e-02
31 32 33 34 R
002 002 002 002 086
017 00 2.7e+08 | 0ia 00 2.1e+09] 008 00 8.2e+03 | 005 00 1.0e+03 1 001 00 9.5e-C1
018 00 5.4e+08 | 01b 00 0000000 | 009 00 1.6e+04 | 006 00 2.0e+03 | C0O2 00 -1.0e+CC
019 00 1.1e+09 | 0lc 00 0000000 | 00a 00 3.3e+04 | 007 00 4.1e+03 | 003 00 -S.le-02
41 42 43 44 B
002 002 002 002 002
00a 00 3.3e+04 | 015 00 6.7e+07]| 013 00 1.7e+07 | 018 00 5.4e+08 1| 001 00 0000000
00b 00 6.6e+04 | 016 00 1.3e+08 | 014 00 3.4e+07 | 019 00 1.1e+09| 002 00 0000000
00c 00 1.3e+05 | 017 00 2.7e+08 | 015 00 €.7e+07 | Ola N0 2.1e+09] 0C3 .0 0000000

> Scroll Datawatches MCLK: (000000627
Fl-Initialize F2-Restart F3-Active update F4-View other screens Ft -Reset
Fé-Continue F7-Single step F8-Step x F9-Run x clocks F10-Break from process

-

Figure 5. SAPVIEW Program Execution and pata Watch Utility.

PROGRAM TRACE AND DATA SNAPSHOT UTILITIES

In order to keep a “record” of the program execution, there were two utilities: pro-
gram trace file creation and data snapshot file creation. Both file types were created
during program execution by the HISSAP operating environment.

The program trace history utility made a record of the 4096 most recent program
counter values for all 20 processors, thus keeping a record of the instruction sequence.
Along with the program counter values, there were the hardware branch patterns
responsible for the execution of the subsequent instructions. This information was most

useful when a processor’s instruction sequence depended upon handshaking with a
neighboring processor. Our experience with this utility was significant, in that many
times improper execution could be located, and its cause determined, by the irace
tiles.

Figure 6 shows an example of the contents of one processor’s trace history.
Included in the history are the time-ordered program counter (PC) values, hardware
branch conditions (flags), and pipeline trace comments associated with each instruction
executed during the run.

rDELAY PC FLAG PIPELINE COMMENTS
0019 0002 0 Wait for host to setup JMAP addrass and assert START flag
0018 0003 O Jump to address in JMAP register.
0017 02f0 O Beginning of module, address: (hex) 2f0
0016 02f1 O
0015 02f2 ©
0014 02f3 0O
0013 02f4 O Perform multiply. Place result in register file: LO1.
0012 02f5 0
0011 02f6 0
0010 02£7 0
000¢ 02f8 0
300e 02f9 0
2500d 02fa ©
000c¢c 02fb 0O
000b 02fc 0O Move result into data memory for next multiply.
530a 02fd ©
0002 02fe 0
cocs 02ff 0 Multiply completed. Wait for host to reset START flag.
cca7 02ff 0 Multiply completed. Wait for host to reset START flag.
n0056 0300 0 End of module. Return to address: 0.
_DELAY = 006 (hex) Processor = 11 W

Figure 6. Program Trace History Utility.

The data snapshot utility worked similarly but was more powerful in that the user
«pecificd which data memory locations were to be interrogated, how many instructions
were executed between interrogations, and which processors were involved in the
records. This capability allowed a more selective viewing of data, and the execution
rate between snapshots could be either full-speed or single-step. An added feature was
the capability of saving snapshot states to files for off-line analysis.

The data snapshot feature generated a history of the computational results of a pro-
gram, at user-sclectable intermediate steps of the algorithm. The capture of such infor-
mation was a crucial part of algoritim debugging. While not always used to its full
potential on HISSAP, this uunty did play an important part in early algorithm

to
[

development, particularly during the MUSIC implementation. The data snapshot feature
is envisioned as an integral part of any parallel programming environment.

Figure 7 is a diagram of the data snapshot concept.

Snapshot Files

280 236049 | aa1 2 (Zach corstructag using
254 2 3E09 442 6 < separate gata specification)
400 33495 | 443 63% Saleew [First comment
i ?1F o O]F e Data Access IF1rst Comment
- ‘/‘_"({2 ;JL,‘D ‘ﬁ) ;:j‘ First Comment
OGOl I Processor 22
FIZ 42276 |42 62t Address Data
737 o0-06 [443 6 34 alvl 3.3£-05
002 7.3E32
O1F 45C £33 43276
o6 azres A e F37 SSE-06
A48 d.1 Proccessor 22

F67 35505 »
032 T5iny M9

Address Data
205 3.5E-05

0Cs 7.3E33
012 6.6E22
/Music‘acl .O':d 55673
°
Int<1alize °
Call Input Module Processor N
Call Snapshot | Data Set: Comment 1 . Address Data
Call QR Module Algorlthm °
Call Snapshot 2 Dpataseti C t2 : ot
CaHSVDpModule e e Instruction Second Comment
Processor 22
1 ~
%l. Snapshot 1 Data Set2 Comment 1) Data Access Address Data
001 45E-05 |
0 7.3E33
°
° ot
Figure 7. HISSAP Data Snapshot Utility.
BREAKPOINT UTILITIES

A lack of operational breakpoint capabilities represented a shortcoming of the
HISSAP debugging utilities. While such capabilities were originally designed into the
HISSAP hardware and development software, they were never fully implemented. Their
absence was noticeable, since many times it was necessary to halt the processors in the
middle of computations to inspect intermediate results in data memory. Throughout the
HISSAP programming effort, this interruption was achieved by performing combina-
tions of full-speed and single-step processor clocking, until the desired portion of code
was reached. This process required knowledge of the differential clock count necessary
to advance the sequencer to the target instruction. When the count was not known
exactly, educated guessing and “hit-and-miss” clocking was a last resort.

23

Breakpoint capability, available in most commercial software debugging utilities,
provides a user-friendly method of controlling program execution, such that processor
activities can be monitored. Some of the more advanced utilities allow breakpoints to
be set at both low and high code levels. It is important to provide both levels of access
in order to benefit machine-level programmers as well as algorithm researchers. In the
case of HISSAP, the ability to set breakpoints at both the microinstruction and C
source levels would have markedly decreased the time spent debugging software. The
restart capability would be required, of course, coexistent with that of multiple break-
point setting.

OPERAND REGISTER AND STACK INTERROGATION

Another feature missing from the HISSAP programming utilities was the ability to
view (and modify) the contents of arithmetic operand registers and the stack. This
omission was a result of the hardware characteristics. The underlying cause was that
the host diagnostic bus did not connect to the register file chips or to the hardware
stack register.

For computations performed with HISSAP’s floating-point units, the source oper-
ands had to reside in operand registers; similarly, results could only be written to
registers. Debugging algorithms on HISSAP frequently required the interrogation of
operand registers during computational phases. This need was most common when
software under development produced erroneous results. The method for viewing regis-
ter contents was to insert “debugging code” (which wrote the register contents to an
unused portion of data memory) into the algorithm code, whereupon the memory inter-
rogation utilitics were invoked and the register contents inspected. This method was
very time-consuming and required the programmer to change the source code, recom-
pile, generate the modified microcode, download it to the processors, and execute the
program until the desired operations finished. ‘

Viewing the program stack contents directly is another indispensable resource for a
parallel programming environment. When incorrect HISSAP program execution resulted
after subroutine calls, or any other operations using stack manipulation, the inability to
interrogate stack registers often left programmers without an indication of the error
source. Considerable time was often spent tracing processor histories and tearing apart
microcode to locate these sources.

ALGORITHM DESIGN AND ASSESSMENT UTILITIES

One tool necessary to shorten the algorithm development time on a parallel proc-
essing system is an analysis and simulation utility. Such a utility allows algorithms to be

24

tested completely under soitware emulation and makes available performance assess-
ments of the simulation. Since multiprocessor implementations of the algorithm may be
tested and changed quickly according to simulation output, this utility allows candidate
algorithms to be almost completely designed while isolated from the target system.

PC-MATLAB AS AN ALGORITHM ANALYSIS TOOL

PC-MATLAB is linear-algebra-based analysis software package. Included in the
tools provided with PC-MATLAB are many important matrix-based functions, some of
which are used in the general MUSIC algorithm (e.g., the singular value decomposition
and the QR decomposition). Also included is a comprehensive set of digital signal-
processing routines (e.g., FFTs, filter designs and implementation, etc.).

It was stated before that algorithm analysis performed by using PC-MATLAB pre-
ceded the mapping of those algorithms onto HISSAP (the analysis of MUSIC by using
PC-MATLAB was performed by Dr. S. I. Chou of NOSC*; results of his work are
given in reference 7). This work was initially performed in an effort to verify the com-
putational performance of target algorithms such as MUSIC. Later, the work was used
to simulate the partitioning of the algorithms among different configurations of “multi-
ple processors” so that the performances of candidate HISSAP implementations could
be analyzed.

Since PC-MATLAB ran on a sequential processing machine, performance character-
istics such as execution time and interprocessor communication could not be evaluated
automatically. However, such measures could be extrapolated by using HISSAP’s
kr...wn operational specifications. Those results provided guidance in selecting “opti-
mum” parallel algorithm configurations.

An added value of using PC-MATLAB as an assessment tool was that selected
intermediate results of an algorithm’s execution could be observed, thus giving insight
into the validity of a particular implementation of that algorithm. Those simulation
results were saved for eventual comparison with results output at respective locations
in the HISSAP implementation of the algorithm.

Because of the rigorous effort required to program HISSAP (especially in the early
stages of algorithm mapping), the simulation of algorithms on PC-MATLAB proved to
be one of the most important features of the HISSAP software development environ-
ment.

*Private conversation with Dr. §. 1. Chou, Naval Ocean Systems Center, San Diego, CA, 1 March
1991,

25

CONCLUSION

The HISSAP HFDF programming experience was unique from software develop-
ment on a hypothetical, “in-place” parallel processing system because some of the
HISSAP software development tools were implemented concurrently with the MUSIC
algorithm development. As time went on, additional features and improvements to
existing utilities were adopted based upon input from microcode/algorithm program-
mers. On a larger scale, the constructs of the microcode and operational aspects of
some of the software development utilities changed as the HISSAP system hardware
was modified throughout the project. These conditions indicate the extent to which the
HISSAP project was an important learning experience in the design and implementa-
tion of software development environments for parallel programming.

This report has attempted to describe the lessons learned from the HISSAP HFDF
software development experience within the specific scope of that project’s objectives.
Again, software development environments for future Navy systems will undoubtedly
feature parallelizing compilers, algorithm design and performance profilers, graphical
user interfaces, and the like. If any of the lessons learned from the HISSAP effort
could be directly extended to general parallel processing systems, they would be
related to those advanced features.

REFERENCES

1. Symanski, J. J. 1983. “Implementation of Matrix Operations on the Two-
Dimensional Systolic Array Testbed,” Proc. SPIE Technical Symposium,
21-26 August. San Diego, CA.

2. Drake, B. L., F. T. Luk, J. M. Speiser, and J. J. Symanski. 1987. “SLAPP: A Sys-
tolic Linear Algebra Parallel Processor,” IEEE Computer (July), vol. 20, no. 7,
pp- 45-49.

3. Henderson, T. B., J. J. Symanski, and K. Bromley. 1989. “Software Development
on the Video Analysis Transputer Array,” Proc. Ist Conference of the North American
Transputer Users Group, 5-6 April. Salt Lake City, UT.

4. Loughlin, J. P. 1987. “NOSC Advanced Systolic Array Processor (ASAP),” Proc.
SPIE Technical Symposium, 18-19 August, vol. 827-13, Real Time Signal Process-
ing X. San Diego, CA.

S. Loughlin, J. P., and F. M. Tirpak, Jr. 1990. “Systolic Signal Processor/High Fre-
quency Direction Finding Final Test Report,” NOSC TR 1369 (October). Naval
Ocean Systems Center, San Diego, CA.

26

6. Lauwereins, R., M. Engels, J. Peperstraete, E. Steegmans, and J. Van Ginder-
deuren. 1990. “GRAPE: A CASE Tool for Digital Signal Parallel Processing,” IEEE
ASSP Magazine (April), vol. 7, no. 2, pp. 32-43.

7. Loughlin, J. P. 1988. “Multiple Signal Classification (MUSIC) Hosted on High
Speed Systolic Array Processor (HiSSAP),” Proc. SPIE 32nd Annual International
Technical Symposium, vol. 977-34, San Diego, CA.

27

REPORT DOCUMENTATION PAGE OB N et o188

Public reporting burden for this collection of information is estimated to average 1 hour per response. including the time for reviewing Instructions, searching existing data sources. gathering and
maintaining the data needed. and completing and reviewing the collection of Information Send comments regarding this burden estimate or any other aspect of this collection of information. including
suggestlons for reducing this burden. to Washington Headquarters Services, Directorate for information Operations and Reports. 1215 Jefferson Davis Highway. Suite 1204, Arlington. VA 222024302,
and to the Oftice of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1 AGENCY USE ONLY (Leave blank] 2 REPORT DATE 3 REPORT TYPE AND DATES COVERED
June 1991 Final: Mar 88 — Mar 91
4 TITLE AND SUBTITLE 5 FUNDING NUMBERS
SOFTWARE DEVELOPMENT ON THE HIGH-SPEED SYSTOLIC ARRAY Navy Industrial Fund
PROCESSOR (HISSAP): PROJ: EE34
Lessons Learned WU: DN308022
6 AUTHOR(S)
F. M. Tirpak, Jr.
7 PERFORMING CRGANIZATION NAME(S) AND ADDRESS(ES) 8 PERFOAMING ORGANIZATION
REPORT NUMBER
Naval Ocean Systems Center
Code 761 NOSC TR 1429
San Diego, CA 92152-5000
9 SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10 SPONSORING/MONITORING
AGENCY REPORT NUMBER
Office of Naval Technology Naval Sea Systems Command
Laser and Microelectronics Block NAVSEA PMS-412
800 North Quincy Street Washington, DC 20362

Arlington, VA 22217

11 SUPPLEMENTARY NOTES

12a DISTRIBUTION/AVAILABILITY STATEMENT 12b DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13 ARSTRACT (Maximurm 200 words)
This report documents the software integration procedure on the Naval Ocean System Center’s High-Speed Systolic
Array Processor (HISSAP) testbed. Procedures are evaluated as they apply to algorithm development on future Navy signal-
processing systems.

14 SUBJECT TERMS 15 NUMBER OF PAGES

systolic array technology 36
matrix processor 16 PRICE CODE
algorithm programming

17 SECURITY CLASSIFICATION 18 SECURITY CLASSIFICATION 19 SECURITY CLASSIFICATION 20 LIMITATION OF ABSTRACT
OF REFORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAME AS REPORT

NSN 7540-01-280 5500 Standard form 298

UNCLASSIFIED

21a NAME OF RESPONSIBLE INDIVIDUAL 21b TELEPHONE (inciude Area Code) 21c OFFICE SYMBOL
F. M. Tirpak, Jr. (619) 553-2526 Code 761
NSN 7540-01-280-5500 Standard form 298

UNCLASSIFIED

INITIAL DISTRIBUTION

Code 0012 Patent Counsel (1)
Code 0144 R. November (1)
Code 76 F. M. Tirpak 1)
Code 761 Dr. G. W. Byram (5)
Code 761 F. M. Tirpak, Jr. (5)
Code 952 J. Puleo (1)
Code 961 Archive/Stock (6)
Code 964B Library (3)

Defense Technical Information Center
Alexandria, VA 22304-6145 (4)

NOSC Liaison Office
Washington, DC 20363-5100 (1)

Center for Naval Analyses
Alexandria, VA 22302-0268 (1)

Naval Air Development Command
Warminster, PA 18974-5000 (2)

